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Abstract

The design of a damping layout can result in a frequency-focused reduction of vibration
responses. Theoretical approaches that relate the spatial-damping parameters with the fre-
quency content of the damping are limited. This research introduces a theoretical approach
to damping-layout design (location and size) with frequency-content control. Initially, the
frequency-response functions (measured or simulated) are modified to obtain the required
damping layout via spatial-damping identification methods. The use of these methods pro-
vides a straightforward relationship between the frequency responses and the targeted spatial
damping. The Lee-Kim spatial-damping identification method is used in the presented nu-
merical and experimental case studies. The numerical and experimental results show that
the approach is capable of providing the desired frequency content. This approach can be
a valuable tool for a damping-layout assessment as high damping can be achieved with a
reduced amount of damping material in a single-step solution.
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1 Introduction

Damping is the dissipation of mechanical energy, mostly in the form of heat and, to a lesser extent,
as acoustic radiation, transmission to coupled dynamic systems or other forms of dissipation [1]. In
structural dynamics, damping, combined with mass and stiffness, represents the dynamic proper-
ties of a structure and is important for the validation and building of analytical/numerical models
in civil, mechanical and aerospace engineering [2, 3].

In these industries, a number of structures are treated with damping materials to reduce the
amount of structure-borne noise [4], to decrease vibration levels [1] or to increase fatigue life [5].
The industrial use of a damping treatment demands its optimization for reasons such as the cost-
effectiveness and the mass loading of the structure. The result of this optimization approach
should be the configuration of the damping layout with the minimum use of damping material –
in short, its minimum spatial layout.

The standard approach to identifying damping in linear mechanical systems is to use one of the
following methods: logarithmic decay [6] in the time domain, a continuous wavelet transform [7],
the Morlet wave method [8] or the synchrosqueezed wavelet [9] in the time-frequency domain, or
half-power point [6] and circle fit [6] in the frequency domain. It is also possible to evaluate the in-
ternal damping using macroscopic constitutive models [10]. However, these damping-identification
methods do not provide any spatial information (i.e., the damping distribution throughout the
structure).

For spatial damping, direct-damping identification methods were developed that identify the
spatial damping directly from the frequency response functions (FRFs) without a transformation to
the modal coordinates. Lee and Kim presented the dynamic-stiffness method [11], which identifies
the damping separately from the mass and stiffness based on the imaginary and the real properties
of the FRF. Other spatial-damping identification methods, not considered in this research, are
reviewed in [12, 13, 14, 15, 16, 17].

Spatial-damping optimization approaches can be divided into the experimental and analytical
[4]. The experimental approaches normally use laser vibrometry to map the vibration responses
at several locations. These responses are subsequently examined and then the damping is applied
to selected regions [1]. It is important to excite the structure over a wide frequency range in
order to identify all the noise and transfer paths [4], which can be a time-consuming operation.
On the other hand, the analytical approach consists of maximizing the damping or minimizing
the structural responses by changing the numerical/analytical model parameters within the given
constraints. The advantage of the analytical approach over the experimental approach is that
it can be applied during the early stages of the design, but it is usually calculation-intensive
and requires a detailed structural model (e.g., a large FEM model). There are a number of less
general, spatial-damping optimization methods that are geometry- or material-specific (e.g., for
plates [18, 23], shells [19], composite materials [20]). General material can be implemented into the
FEM-based method [21, 22], but the result is a damping layout of variable thickness fragmented
over the structure that is not very practical to implement.

In contrast to the optimization methods where typically the mass volume of the damping
material is minimized, this research focuses on damping design for frequency-focused vibration
reduction. The underlying idea is to use one of the existing spatial-damping identification methods
that gives a straightforward relationship between the frequency responses and the targeted spatial
damping.

This research is organized as follows. The damping-layout design approach is introduced in
Section 2. In Section 3, the theoretical background of the Lee-Kim method is briefly presented.
In Section 4, the validation of the approach is illustrated with two numerical examples and later
the performance of the approach is tested with a real beam experiment. Finally, the conclusions
are drawn in Section 5.
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2 Design of damping layout

A frequency-domain design approach is presented here in which the frequency-response functions
(FRFs) are modified and the resulting changes in amplitudes are estimated using established
spatial-damping identification methods. Fig. 1 shows the required steps. The input data is the
measured (or synthesized) FRF matrix H(ω), after which the modal damping ratios are changed
in the frequency domain to obtain the modified FRF matrix HMOD(ω). The spatial-damping
identification method is applied to both FRF matrices to obtain the initial DINIT and modified
DMOD spatial-damping matrices. The difference between the spatial-damping matrices is the
damping layout.

change
modal

damping

spatial
damping

identification

spatial
damping

identification

damping
layout

Figure 1: Proposed damping-layout design approach.

The input data H(ω) can be synthesized from the spatial model [6]:

H(ω) =
[
K − ω2 M + i D

]−1
(1)

where K is the stiffness matrix, M is the mass matrix, D is the hysteretic damping matrix and
ω is the angular frequency. The second option is to synthesize H(ω) from the modal data. The
FRF matrix is synthesized for each coordinate j and k as the sum over n modes as [6]:

Hjk(ω) =

n∑
r=1

rAj,k

(1 + i ηr)ω2
r − ω2

(2)

where r is the mode number, rAj,r is the modal constant of the r-th mode for the matrix
coordinates j and k, ωr is the eigenfrequency of the r-th mode and ηr is the damping ratio of the
r-th mode.

After obtaining the initial FRFs, the damping ratios of the selected modes are changed to
obtain the desired frequency content, see Fig 2. Regardless of the input data (e.g., measured or
synthesized) the modal parameters of the initial FRF matrix can be extracted using experimental
modal analysis (EMA) [6]. The mode-based approach to obtaining the desired frequency content
is preferred because the vibration responses are sensitive to the damping changes for the frequency
range around the resonances only [1]. From the modified modal parameters (i.e., the damping
ratio changes) the modified FRF matrix is reconstructed with (2).

Finally, the spatial-damping identification method is used to identify the spatial-damping ma-
trices from both FRF matrices. The identified spatial-damping matrix is the spatial distribution
of the damping over the structure and the difference between the initial and modified damping
matrices is the required damping layout.

The proposed spatial-damping design approach can be developed into an iterative one to ac-
count for the mass and stiffness changes of the applied damping treatment [23], but its development
is beyond the scope of this research.
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Figure 2: Preparation of the FRFs for the identification step.

The Lee-Kim [11] spatial-damping identification method will be used in the case studies. The
method is general and can be applied to any type of structure; its performance was thoroughly
analysed in [24]. A theoretical presentation of the method is given next.

3 Spatial-damping identification method

In this section the background of the Lee-Kim [11] direct-damping identification method for hys-
teretic damping is briefly presented. Assuming a linear system and a harmonic excitation/response,
the general, second-order, matrix differential equation can be written in the frequency domain
as [6]:[

K − ω2 M + i D
]
X(ω) = F (ω) (3)

From (3), the receptance FRF matrix H(ω) is defined as [6]:

X(ω) =
[
K − ω2 M + i D

]−1
F (ω) = H(ω)F (ω) (4)

and the dynamic stiffness matrix Z(ω) is defined as the matrix inverse of H(ω) at each frequency
point ω:

Z(ω) = H(ω)−1 =
[
K − ω2 M + i D

]
(5)

Using (5) the hysteretic damping matrix might be obtained directly from the imaginary part
of the dynamic stiffness matrix Z(ω):

imag(Z(ω)) = imag([H(ω)]−1) = D, (6)

Rearranging (6) to isolate the damping matrix D gives:

D = imag([H(ω)]−1) (7)

Method (7) is not limited to hysteretic damping [25].

4 Numerical 5 DoF case study

Fig 3 represents a 5-degree-of-freedom (DoF) lumped-mass model that will be used for the initial
validation of the proposed method. Two model properties are defined by the mass m = 5 kg
and the stiffness k = 2 · 106 N/m, and are arranged into mass M and stiffness K matrices. The
initial hysteretic spatial-damping values d of the model are defined as the stiffness-proportional
damping [6] at the matrix level as:

D = βK, (8)

where β is the stiffness proportional constant, which was chosen to be 0.01.
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Figure 3: 5-DoF model used in the simulation case.

4.1 FRF matrix modification

With the defined structural matrices M, K and D the full FRF matrix can be obtained using
(1). To modify the FRF matrix the modal parameters are extracted from the spatial model. The
following eigenproblem has to be solved [6]:[

K + i D − λ2r M
]
ψr = 0 (9)

where λr is the r-th complex eigenvalue and ψr is the corresponding mode shape. The complex
eigenvalue contains the information about the r-th eigenfrequncy ωr and the r-th damping ratio
ηr [6]:

λ2r = ω2
r (1 + i ηr) (10)

Stiffness proportional hysteretic damping is a special case where the modal damping ηr is equal
to the proportional constant β [6]:

ηr = β (11)

The FRF matrix H can now be written with the modal parameters as:

Hjk(ω) =

n∑
r=1

rAj,k

(1 + i ηr)ω2
r − ω2

(12)

where rAj,k is the modal constant that contains the product of the j-th and k-th component
of the mode-shape vector:

rAj,k = ψr,j ψr,k (13)

In the 5-DoF case the damping ratio of the first and second modes was changed to 0.04 and
then the FRFs were obtained with Equation (12), see the approach defined in Section 2. Fig 4
shows an example of the initial and the modified receptance magnitude FRF of H2,3(f), where
2-3 denotes that the structure was excited for the 2nd DoF and the responses were obtained for
the 3rd DoF (this designation will be used throughout the paper).

4.2 Design of damping layout

Fig. 5 shows the values of the identified hysteretic damping matrix of the 5-DoF model using the
hysteretic Lee-Kim method (7) where: (a) is the identified hysteretic damping matrix D from
the DINIT, (b) is the identified hysteretic damping matrix DMOD from the DMOD and (c) is the
difference between the two damping matrices. Larger absolute numerical values (e.g., D1,1 = 45000
N/m in Fig. 5), represent areas of higher damping. To obtain the damping layout the criteria for
the most effective damping locations were selected. Fig. 6 shows the locations of the difference
matrix Fig. 5(c) where the absolute damping values are higher than the selected threshold, in our
case 65%:

DDL = [difference > threshold] (14)
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Figure 4: Initial and modified FRF for the 5-DoF model.

where DDL is the damping-layout matrix.
To double-check the proposed damping layout the FRFs were reconstructed using the identified

hysteretic damping matrix DIDE:

HREC(ω) =
1

[K − ω2 M + i DIDE]
(15)

The resulting FRF is shown in Fig. 7. The modified and the reconstructed FRF fit to each
other.

5 Beam case study

Initially, numerically simulated data for the free-free beam is used to demonstrate the effectiveness
of the Lee-Kim method. The damping layout is given as the result in the simulation step. In the
validation step, the proposed damping layout was applied in a real experiment to a beam with the
same properties as in the numerical simulations. The FRFs were measured and compared to the
numerically modified ones.

5.1 Numerical simulations

The beam properties used for the numerical simulations were: density ρ = 7850 kg/m
3
, constant

cross-section h× b = 1 mm × 30 mm, length l = 400 mm and Young’s modulus E = 210, 000 MPa.
The beam dimensions were selected to have a low modal overlap and to have a large number
of modes in the frequency span up to 2000 Hz. The modal vectors and values were simulated
using the Euler-Bernoulli theory [26]. The initial damping of the model is defined as the constant
modal damping ratio of η = 0.002 for each mode as the hysteretic damping ratios for the bending
vibrations of steels ηsteel range from 0.002 to 0.006 [27]. The damping ratios for the modes 4 to 10
were increased from 0.002 to 0.02, and then the FRFs were resynthesized using (2), see Fig. 8.
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Figure 5: Hysteretic damping matrix D: (a) simulated stiffness-proportional, (b) identified after
FRF modification and (c) difference (b)-(a).

5.2 Design of damping layout

Fig. 9 shows the values of the identified hysteretic damping matrices of the beam model using the
hysteretic Lee-Kim method (7) where: (a) is the identified hysteretic damping matrix from the
initial FRFs, (b) is the identified hysteretic damping matrix from the modified FRFs and (c) is
the difference between the two damping matrices.

To obtain the damping layout the criteria for the most effective damping locations were selected.
Fig. 10 shows the locations of the difference matrices, while Fig. 9(c) shows where the absolute
damping values are higher than the selected threshold (65% was used). DoFs 5 to 8 were selected as
the proposed locations for the damping layout to cover most of the high damping areas (excitation-
response DoF pairs: 5-5, 5-8, 8-5 and 8-8) found in Fig. 9(c). The damping terms close to the
main diagonal connect the neighbouring DoF and form a continuous area to apply the damping
treatment.

6 Experimental validation of the beam case

The proposed damping layout from Section 5.2 is here applied to the real beam to analyse the
performance of the proposed method. Damping over the proposed locations was achieved using the
established constrained-layer damper configuration [1]. The selection of the damping-treatment
design parameters (e.g., the material type or thickness) to obtain the desired damping values is
beyond the scope of this research. The interested reader is referred to [1, 28, 29].

6.1 Sample preparation

The experiment was conducted on the two equal-sized, free-free, beam specimens to validate the
damping-layout result. The first specimen was a plain sample (without any damping treatment),
while the second was treated with constrained-layer damping (CLD) at the proposed locations, see
Fig. 11. Two soft springs (stiffness ≈ 50 N/m) were used at each beam boundary in the y-direction
to limit the rigid-body translation after the impact. Isolated DoFs (e.g., 2-2 and 11-11) were not
considered as a viable option – applying the constraining layer locally over a small area is not
effective [1]. The visco-elastic layer for the application was 3M 112P02 damping material [30].
The steel constraining layer was of the same material and thickness as the beam to maximize the
damping [30]. Holes were drilled in the constraining layer to measure the responses of the beam
only.
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Figure 6: Identified damping layout at 65% threshold.

6.2 Measurement setup

The measurement setup is shown in Fig. 12. A custom-made solenoid impactor with a PCB 086E80
force sensor was used for the repeatable impulse excitation. The response (velocity) measurements
employed a Polytec PDV100 laser vibrometer. This impactor/laser-based measurement allows for
a non-contact measurement without structural modification due to the added stiffness or mass
from the sensors or shakers. The data acquisition and signal processing made use of a custom
python-software environment using the pyDAQmx library [31] to interface the NI 9215 acquisition
hardware. The sampling rate was 100 kHz and the signal was captured for 5 seconds.

To obtain a full FRF matrix H the beam was sequentially excited at 15 points, and the
responses were measured at the same 15 points (15 × 15 excitation-response pairs, n = 15), as
shown in Fig 12. Each excitation-response point was measured three times to obtain the averaged
H1 estimator (mobility FRF) and later divided by iω in the frequency domain to obtain the
receptance FRFs [6].

6.3 Measured frequency responses

Fig. 13 shows the comparison of the measured receptance magnitude FRF for the CLD-damped
beam with the modified one. It is clear that the damping affects the frequency range from the
5-th mode up, whereas in the FRF preparation step the damping was increased from the 4th mode
up. In addition, the added stiffness and mass due to the damping treatment were not considered
during the damping-layout design step, thus slight amplitude and mode eigenfrequencies changes
are observable in Fig. 13.

7 Conclusion

This research introduces a theoretical approach to damping-layout design with frequency-content
control. The approach is based on the spatial-damping identification methods and can be applied
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Figure 7: Reconstructed FRF for 5-DoF model with artificially damped modes 1 and 2 at H2,3(f).

to general structures. First, the damping-layout design approach is summarised and, second,
for validation purposes, the approach is analysed for two cases: a 5-degree-of-freedom (DoF)
model and a larger 15-DoF beam numerical model. Lastly, the performance of the approach is
demonstrated on real beam test cases, from which the following conclusions can be drawn:

• The approach is capable of providing the desired frequency content.

• High damping is achieved with a reduced amount of damping material.

• The approach is simple and flexible: the input data can be measured, modelled or even a
mixture of both.

• The use of a damping model and a damping-identification method is open to the user, while
for specific cases a more advanced damping model can be used.
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